Ionic solutes impact collagen scaffold bioactivity
نویسندگان
چکیده
The structure of ice-templated collagen scaffolds is sensitive to many factors. By adding 0.5 wt% of sodium chloride or sucrose to collagen slurries, scaffold structure could be tuned through changes in ice growth kinetics and interactions of the solute and collagen. With ionic solutes (sodium chloride) the entanglements of the collagen molecule decreased, leading to fibrous scaffolds with increased pore size and decreased attachment of chondrocytes. With non-ionic solutes (sucrose) ice growth was slowed, leading to significantly reduced pore size and up-regulated cell attachment. This highlights the large changes in structure and biological function stimulated by solutes in ice-templating systems.
منابع مشابه
Biomimetic component coating on 3D scaffolds using high bioactivity of mesoporous bioactive ceramics
BACKGROUND Mesoporous bioactive glasses (MBGs) are very attractive materials for use in bone tissue regeneration because of their extraordinarily high bone-forming bioactivity in vitro. That is, MBGs may induce the rapid formation of hydroxy apatite (HA) in simulated body fluid (SBF), which is a major inorganic component of bone extracellular matrix (ECM) and comes with both good osteoconductiv...
متن کاملThe effect of Silica coating on bioactivity and biodegradability of Hydroxyapatite synthesized in collagen matrix
The aim of this work was to investigate the effect of silica coating on bioactivity and biodegradability of hydroxyapatite. In this purpose, we firstly attempted to synthesis hydroxyapatite (HA) nanoparticles and its silica coated (Si-HA) sample in collagen matrix using calcium chloride, sodium phosphate and sodium silicate. Characterization of the sample was carried out using Fourier transform...
متن کاملThe effect of Silica coating on bioactivity and biodegradability of Hydroxyapatite synthesized in collagen matrix
The aim of this work was to investigate the effect of silica coating on bioactivity and biodegradability of hydroxyapatite. In this purpose, we firstly attempted to synthesis hydroxyapatite (HA) nanoparticles and its silica coated (Si-HA) sample in collagen matrix using calcium chloride, sodium phosphate and sodium silicate. Characterization of the sample was carried out using Fourier transform...
متن کاملCollagen: a network for regenerative medicine
The basic building block of the extra-cellular matrix in native tissue is collagen. As a structural protein, collagen has an inherent biocompatibility making it an ideal material for regenerative medicine. Cellular response, mediated by integrins, is dictated by the structure and chemistry of the collagen fibers. Fiber formation, via fibrillogenesis, can be controlled in vitro by several factor...
متن کاملAddition of hydroxyapatite improves stiffness, interconnectivity and osteogenic potential of a highly porous collagen-based scaffold for bone tissue regeneration.
There is an enduring and unmet need for a bioactive, load-bearing tissue-engineering scaffold, which is biocompatible, biodegradable and capable of facilitating and promoting osteogenesis when implanted in vivo. This study set out to develop a biomimetic scaffold by incorporating osteoinductive hydroxyapatite (HA) particles into a highly porous and extremely biocompatible collagen-based scaffol...
متن کامل